Categories
Technical Literature

Working wonders with APDL Math – Ep 01 : Thermal Modal Analysis

Conclusion

APDL Math was presented as an alternate route for users who need to include specialized steps in an otherwise standard FE process, and in my opinion it does just that. The benefits can be immense and the learning curve is steep but short. As long as the user knows what he/she is doing, there is little possibility to get lost: after all, APDL Math only comprises 18 additional commands.

At first, what hindered me was the necessity to account for internal, BCS and user ordering, but it really is not a big deal, as seen from the above example.

What is more, the possibility to store the created results in the Mechanical APDL database (DNSOL and RAPPND are your friends!) provides every means to control your results and finally to build confidence in your developments.

And for those of us who prefer to stay within Workbench environment, there is nothing preventing from including APDL Math procedures into Workbench command snippets.

This was just an introductory example, since many other applications could be found, to name a few just in the fields of precision engineering and/or opto-mechanics:

  • Speed up transient thermal mechanical analyses,
  • Perform harmonic analysis of thermal models,
  • Virtual testing of physical setup, including real-time control systems (model based)
  • Modal testing, error localization, automated model updating

Let us know your opinion on the matter, and if further introductory articles on APDL Math could be of use to the ANSYS users community.

Note: this article was previously issued on PADT’s Blog “The Focus”.

Original article can be found here