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Thermal Modal Analysis with Static Correction: an efficient tool to model and design thermal compensation systems
Llntroduction

Objective (1/2)

Models in the context of thermal compensation systems

disturbance ——w z —> controlled variable

control input u Y output variable

Objectives:
» minimize closed-loop response T, =[G, + G, C(] — GyuC)_leW]
P guarantee stability

Need to know G, Gyw,Gzu, Gyy SOLEIL
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Llntroduction

Objective (2/2)

What do we expect from a thermal model

A "good” model for thermal/thermal-elastic problems should be:

1. computationally efficient (fast and accurate)
2. compact in size (lightweight)
3. physically meaningfull (supports engineering judgment)

Modal decomposition only partially fullfils those requirements.
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Thermal Modal Analysis with Static Correction: an efficient tool to model and design thermal compensation systems
LModaI Truncation Error - Rationale

LTruncation Error effect

Thermal Response - Direct approach
Starting from conductivity [K] and capacity [C] matrices:

In time domain:

[CIT +[K]T=P (1)
In frequency domain:
(wlCl+[KDT =P (2)
Hence
G(w) = (j[C] + [K]) ! (3)

Most accurate numerically, but computationally demanding. Completely extensive but
not really informative. Not suited for control loop design.
SOLEIL
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LModaI Truncation Error - Rationale

LTruncation Error effect

Thermal Response - Modal approach
Thanks to symetry, we can solve for the modes:
(IC] + 7i[K])®i = 0 (4)

Then the system "thermal compliance” reads:

Ndof
Z O ®

le(w) - 1+ jwr; (5)
i=1 JWTi

As accurate as direct method but only if all modes are extracted. Not feasible nor
necessary in practice.
No clear-cut criterion to accept/reject truncated model.
SOLEIL
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LModaI Truncation Error - Rationale

L'I'runcation Error mitigation

Modal truncation error: simplification

Retaining only the first n, modes (nm, < ngof).

Nm Ndof
[OPH O (OPR O
Gulw) =S K21 |y~ OO 6
k() — 14 jwT; + P 1+ jwT; (6)

Let wp be the bandwidth of the controller to be designed. Including all modes with
7i >> 1/wp, the truncation error can be approximated as a frequency independent
term.

Ndof d)k, i Ndof
Ri(w) = Z 0 ior Z uprtoF (7)

WTj
i=nm+1 +‘I ! =nm+1

SOLEIL
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LModaI Truncation Error - Rationale

L'I'runcation Error mitigation

Modal truncation error: estimation

Rewriting compliance in the static domain (w = 0)

Ndof
Gu(0) = Zd)kl it Y by (8)
i=nm+1
So that .
R = Gi(0) = > &4 (9)
i=1

This term cand be added to "thermal compliance” so as to compensate for the
"thermal flexibility” of discarded modes.
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|—Practica| Application
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LPracticaI Application
LTest Case Description

Beamline Primary Mirror

Technical Procedure:

1. Build plant thermal-elastic
state space model
(ANSYS / APDL Math)

2. Shape controller using LTI
models (Matlab)

3. Build prototype

160x25mm? optical surface
SiC / Water cooled
heat load: 400W
drift rate: 1%/s
allowable slope error: 1urad

4. Validate optical performance
(HASO at SOLEIL Optical
Metrology Lab)

SYNCHROTRON
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LPlractical Application
LTest Case Description

Controller Architecture

beam ——w 2z F——thermal bump
G(f)
heat foil u Y temperatures
c(f)
Ty On upper surface Ideal Case: y = T1 — Ty
T> | 10mm below upper surface Real Case: y =T, — T3
T3 | 10mm above lower surface Performance: controlled by G,,,
Ta On lower surface Stability: controlled by Gy, .

SOLEIL
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|—Practica| Application
|—Test Case Description

Plant Response - Reference Results Using Full Method

amplitude

phase

Thermal Response Function - Amplitude [K/W]

Transfer Function - Phase [degree]
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|—Practica| Application

|—Results using Modal method

Results (1/5): Thermal Time Constants

Thermal Modal Time distribution

Desired bandwidth 10~ Hz
. ] Let’s retain modes with T > 1.6s

time constant [s]
o

. i
0 10 20 30 40 50 60 70 80 90 100
mode rank

wa,
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L Practical Application

|—Results using Modal method

Results (2/5) : First 6 Thermal Mode Shapes
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Thermal Modal Analysis with Static Correction: an efficient tool to model and design thermal compensation systems

LPracticaI Application
LResults using Modal method

Results (3/5): Modal Method Convergence Rate

Static responses close to beam heat load

T1 7>

Error on Node1133-T - Input 1

100 Error on Node1139-T - Input 1
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Close to heat load

convergence is extremely
slow: over 30% error with

100 modes included
Away from heat load
convergence is faster

Brute force cannot be

employed.
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LPracticaI Application
LResults using Modal method

Results (4/5): Frequency Responses Compared
Direct vs Modal FRFs - Thermal probes at IDEAL positions

Gyu - full vs modal FRF (4 modes) - ideal case Gyn - full vs modal FRF (4 modes) - ideal case
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With residual vector, modal method yield exact results ( £1dB).
Above cutoff frequency phase is somewhat overpredicted, though
[m] = =
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I—Practical Application
LResults using Modal method

Results (5/5): Frequency Responses Compared

Direct vs Modal FRFs - Thermal probes at REAL positions

Gyu - full vs modal FRF (4 modes) - real case Gy“ - full vs modal FRF (4 modes) - real case
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Again, modal method yield almost exact results
Above cutoff frequency phase becomes largely overestimated
[m] = =
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- Summary and Conclusion

Summary
Applicability and Benefits
For cases where localized thermal loads exist:

1.
2.

5.

high spatial frequency thermal modes are excited

this requires inclusion of a very large number of modes to capture the local
response

however, most of those modes have short time constants, hence respond
quasi-statically

they can be lumped into a single, additionnal contribution, directly proportionnal
to input, i.e. a residual vector

the modal basis can then be restricted to those modes that respond dynamically

In terms of state-space representation, this amounts to adding a feedthrough term, all

other aspects remain unchanged SOLEIL
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- Summary and Conclusion

Outlook

Possible evolutions
Functionnality:

» Performance: Gain can be accurately obtained, even with a small number of
modes, so that controller reduction estimates will be reliable

> Stability: phase is overpredicted at higher frequencies, hence stability cannot be
guaranteed. This could be solved by replacing residual vectors by residual modes

Usability:
» Protoyping completed : APDL Math procedures perform Modal Analysis,
Frequency Response, Residual Vector, State-Space Model, etc

» Next step: Encapsulate as an add-on ("ACT App")

Questions 7 Comments? S
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Thermal Modal Analysis with Static Correction: an efficient tool to model and design thermal compensation systems
L ANSYS APDL Math snippet

Thermal Modal Analysis
/SOLU
ANTYPE,MODAL,NEW ! Modal analysis
modopt ,LANB,nbModes,-1e-6,1/(2«PI*SQRT (TauMin) ), ,0FF ! Normalize to
unit mass
*EIGEN,MatK,MatC, ,EiV,MatPhiSolv
! internal to Boundary conditions mapping
*MULT ,Nod2Bcs,TRAN,MatPhiSolv, ,MatPhi
! Check mass normalization
*MULT ,MatC, ,MatPhiSolv, ,APhi
*MULT ,MatPhiSolv,TRANS,APhi, ,PhiTMPhi
! PRINT THIS MATRIX: IT SHOULD BE [I]
*PRINT,PhiTMPhi,PhiTMPhi. txt

Extracts nb modes with T > TauMin S
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Thermal Modal Analysis with Static Correction: an efficient tool to model and design thermal compensation systems
L ANSYS APDL Math snippet

Estimate Generalized forces (Load vector)

! Fi=matPhi x VecF

! intermal to Boundary conditions mapping
*MULT ,MatPhiSolv,TRAN,vecF, ,modalForcesVec
*IF,indLoad,EQ,1,THEN

*DMAT ,modalForces,D,COPY,modalForcesVec

*ELSE

*MERGE ,modalForces,modalForcesVec,indLoad,COL
*ENDIF

Fills the modalForces matriz with generalized forces (nbModesznbLoad)

SOLEIL

SYNCHROTRON
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L ANSYS APDL Math snippet

Residual Vectors (1/2)

*LSENGINE,BCS,MyBcsSolver,MatK
*LSFACTOR ,MyBcsSolver
*do,indLoad,1,nblLoad *SMAT,vecF,D,IMPORT,MAT,RunThermalVecF%indLoad}
! CONSTRUCT EXACT SOLUTION *LSBAC,MyBcsSolver,VecF,TBcsExact
*MULT,Nod2Bcs,TRAN,TBcsExact, ,T_Exact
I CONSTRUCT THE APPROXIMATE SOLUTION
*VEC,T_MODAL,D,ALLOC,T_EXACT_ROWDIM
*do,indMode,1,nbModes ! Extract one mode at a time
*VEC, currVec,D,LINK,MatPhi, indMode
*AXPY, TauArray (indMode) *modalForces (indMode, indLoad) ,0,currVec,1.,0,T Modal
*enddo

S
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L ANSYS APDL Math snippet

Residual Vectors (2/2)

| Estimate Error (=residual vector)
*VEC,T_RESVEC,D,ALLOC,T_EXACT_ROWDIM
*AXPY,1.,0.,T_EXACT,1.,0.,T_RESVEC *AXPY,-1.,0.,T_-MODAL,1.,0.,T_RESVEC
*ENDDO

! Store Residual Vector into matrix

*IF,indLoad,EQ,1,THEN *DMAT,T_RESVEC_MAT,D,COPY,T_RESVEC *ELSE

*MERGE, T_RESVEC_MAT,T_RESVEC, indLoad,COL

*ENDIF

Constructs Temperature Restdual Vectors (nbNodesznbLoad)
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